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The Navier--Stokes equations are taken as the basis of a model for describing the 
motion of a gas in a channel with cryogenic walls. A method for numerical solu- 
tion of the problem and its results are discussed. 

In applied gasdynamics, there is a class of problems that is of interest and importance 
in applications and involves the motion of a gas in channels and pipes with walls which have 
cryogenic properties. The temperature of such walls is maintained at a very low level, which 
ensures freezing of the gas and which, in turn, makes it possible to control flow rate and 
other dynamic parameters of the gas in a given cross section of the channel by means of pure- 
ly thermal effects. 

In the general case, the description of steady-state flow of a gas in such a plane- 
parallel channel is provided by the complete Navier--Stokes equations solved in a region whose 
boundary is determined by the condition of phase transition. A simplified model is proposed 
below which was constructed without consideration of end effects (infinitely long channel) 
and under the assumption that the phase-transition surface coincides with the wall at which 
the appropriate boundary conditions are set. As will be shown in the following, the assump- 
tion of a definite law for the variation of viscosity makes it possible to reduce the prob- 
lem, within the limitations of the model, to the numerical solution of a system of ordinary 
differential equations. 

We consider the steady-state motion of a viscous and thermally conducting gas in an in- 
finitely long, flat channel of width 2R. The gas is assumed thermally and calorically ideal; 
its Prandtl number and specific heat are constants. The Navier--Stokes equations are written 
in Cartesian coordinates, where the z axis is directed along the symmetry axis of the chan- 
nel and the y axis is along the normal to the wall, 
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where 0 is the density of the gas, H = h + v2/2 is the total enthalpy, and ~ = ep/c v is the 
ratio of specific heats. The components of the thermal flux vector and of the viscous stress 
tensor are given by the expressions 
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We assume an adhesion condition as a boundary condition for the velocity at the wall of 
the channel. Instead of thermal equilibrium at the boundary of the wall layer (it is the 
same as the phase-separation boundary), we assume that the temperature reached directly at 
the surface of the wall goes to zero. Such a simplification is widely accepted in the solu- 
tion of problems with phase transitions [i, 2]. 

These conditions are added to the condition for symmetry of the flow and we have in all 

v,, (R, z) = v~ (R, z) = h (R, z) = O, 
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Integral conditions should be added to the conditions (3); one should assign mass, mo- 
mentum, and energy flows in the axial direction for the entry cross section of the channel, 
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where q,, q2, and q3 are given positive constants. 

For closure of the system (I), it is necessary to assign a law for the variation of vis- 
cosity. We set this law in the form 

= A ~ h  (A = const), (5) 

which makes i t  p o s s i b l e  to  p i c k  o u t  a c l a s s  o f  s o l u t i o n s  w i t h  s e p a r a b l e  v a r i a b l e s  f o r  t h e  
s y s t e m  (1) [ 3 ] .  L e t  a be some d i m e n s i o n l e s s  p a r a m e t e r  and l e t  t h e  r e l a t i o n s  
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be satisfied for the local flow characteristics. 

Integrating all terms of the differential equations (i) with respect to y between the 
limits 0 and R, with Eqs. (6), the boundary conditions (3), and the integral conditions (4) 
taken into account, we obtain at the entry cross section 
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Thus the  use  of  a c l a s s  of  s o l u t i o n s  f o r  which Eqs. (6) a re  s a t i s f i e d  l eads  to a s i t u a -  
t i o n  where the  i n t e g r a l  c o n d i t i o n s  (4) t ake  the  form of  the  boundary c o n d i t i o n s  (7) ass igned  
a t  y = R f o r  c e r t a i n  combina t ions  of  the  hydrodynamic pa rame te r s  and t h e i r  d e r i v a t i v e s .  

The i n t e g r a l  flow c h a r a c t e r i s t i c s  q i  from Eq. (4) ,  the  c o n s t a n t  A from Eq. (5) ,  and the  
channel  h a l f - w i d t h  R form a s e t  of  d imens iona l  d e f i n i t i v e  parameters  o f  the  problem. We i n -  
t roduce  combinat ions  of  them having the  d i m e n s i o n a l i t y  of  en tha lpy  and v e l o c i t y  by assuming 
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Because Eqs. (6) are satisfied, Eqs. (i) can be transformed to dimensionless form by 
means of the substitutions 
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where w ~ v ~ h~ p ~ and pO , , , are dimensionless functions of the single argument yO. 

We also introduce the dimensionless parameters 
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Omitting the zeros from the notation for dimensionless quantities and denoting deriv- 
atives with respect to yO by primes, we obtain 
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a f t e r  s u b s t i t u t i o n  o f  Eqs. (8) i n t o  Eqs. (1) .  

The boundary conditions obtained from Eqs. (3) and (7) take the form 

v(1)  = w ( 1 )  = ha(1 ) = 0, p ( 1 ) . v ( 1 )  = 1, 

Vhl(1)w'(l)=--2/3, [ /h1(I)  hl (l) = - -2/3,  

v(0)  = w' (0) = h; (0) = 9' (0) = Pl (0) = O. 

(12) 
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Fig. i. Profiles of axial velocity and temperature com- 
ponents: a) y = const = 0.18 [i) 8 a = 1.25; 2) B i = 
1.45; 3) 8 i = 1.70]; b) 8 i = const = 1.3 [i) y = 0.185; 
2) y = 0.150; 3) y = 0.115] (solid curves, velocity; 
dashed curves, temperature). 

Desiring to delineate the nature of the solution of the nonlinear boundary-value problem 
(ii), (12), we write down asymptotic expansions of the functions sought in the neighborhood 
of the point y = 1 in the form 
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where the coefficients By, Bw, and B h can be expressed through the assigned parameters and 
the undetermined coefficient A v. Assigning some value to the latter, we calculate values for 
the functions sought (and for their derivatives where necessary) at some initial point yo = 
i -- c (E is a small quantity). After this, one should integrate Eqs. (II) numerically, vary- 
ing the value of A v until all the boundary conditions at y = 0 are satisfied to the required 
accuracy. Refinement of the value of A v is accomplished by Newton's method using asymptotic 
representations of the solution in the neighborhood of y = 0. 

The proposed method for numerical solution of the problem may not yield the desired re- 
sults, since there are physical considerations and data from numerical experiments which fur- 
,nish evidencethat a mathematical solution of the problem (ii), (12) does not always exist and 
that, consequently, the set of parameters a, 8, and y cannot be assigned completely arbitrar- 
ily. A rigorous investigation of the boundaries of the region in which a solution exists in 
(a, 8, Y) space presents great mathematical difficulty and is not in accord with our purpose. 
However, a necessary condition for the existence of a solution can be obtained rather simply 
if integral relations are obtained from Eqs. (4) by transforming the integrands in them by 
means of the substitutions (9). Omitting the details of this part of the study, we merely 
point out that by the substitution into those relations of sufficiently simple but realistic 
approximations to the desired functions, one can manage not only to check whether a solution 
of the problem exists for selected values of the dimensionless similarity parameters, but 
also to select an approximate value of Avwhlch significantly accelerates and simplifies the 
numerical integration. 

Some results of numerical calculations performed for a = 0.i, u = 1.4, G = 0.75, and 
for a number of values of 8 i and y are shown in Figs. 1-3. The figures make it particularly 
clear that an increase in 8 a at fixed y leads to an elongation of the velocity profile and a 
compression of the temperature profile, while an increase in y at fixed 82 produces the op- 
posite effect. 
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Fig. 2. Pressure profiles: a) y = 
const = 0.18 [I) B 2 = 1.25; 2) B 2 = 
1.45; 3) B 2 = 1.70]; b) B 2 = const = 

1.3 [i) y = 0.185; 2) y = 0.150; 3) 
= 0.115]. 

Fig. 3. Profiles of transverse ve- 
locity component: I) y = 0.185; B 2 = 
1.3; 2) y = 0.170, 82 = 1.7. 

An important characteristic of gasdynamic flow in a pipe or channel is the coefficient 
of resistance %f of the test object. We define it, as is done in gasdynamics [4], by means 

of the expression (in dimensional notation) 

dp__o =- P0V0 , (14) 
dz 2R 2 

where the subscript 0 refers to values on the channel axis at an arbitrary cross section z = 
const. After transformation to dimensionless notation in accordance with Eqs. (9) and the 

use of Eqs. (I0), we obtain 

~ ] = 4 5  •  ~2__h0 = 25- - •  ~(5, ~, ?). (15) 

In the general case, the function ~(a, B, Y) cannot be represented in closed analytic 
form and yields poor approximations. If the values of a and y are sufficiently�9 small (we 

neglect their squares), one can obtain the approximate expression 

where Bl and Ba a r e  E u l e r  i n t e g r a l s  o f  t h e  f i r s t  k i n d ,  BI = B(1 /2 ,  s / , ) ,  and B2 = B(1 /2 ,  " / , ) .  
The r e q u i r e m e n t  t h a t  t h e  q u a n t i t y  under  t h e  s q u a r e  r o o t  s i g n  i n  Eq. (16) be p o s i t i v e  y i e l d s  
y e t  a n o t h e r  l i m i t a t i o n  on t h e  a p p l i c a b i l i t y  o f  Eq. (16) which t a k e s  t h e  form Y/(aB=) ~ 0.8535 
when •  1 .4  and ~ = 0 .75 .  

The t o t a l  r e s i s t i v e  f o r c e  a c t i n g  on a c h a n n e l  segment  o f  l e n g t h  Z i s  g i v e n  by 

l 

Fl = kS[(Po)z'-o- (Po)z=l] = ~vkS p~ ( 1 - - e  ), (17) 
4a 

where k is the ratio between the average pressure over a cross section and the p=essure at 
the axis. 

The determination of the coefficient of heat transfer of the gas at the channel surface 
also offers no difficulty in principle, but this coefficient is of little interest in the 
present instance. We merely point out that, as follows from the physical formulation of the 
problem, the thermal flux at the wall is a finite, nonzero quantityvarying inthe axial direc' 
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tion like exp (--3az/Z). Such a nonuniform relase of heat from the channel wails is automat- 
ically accomplished in practice with a steady-state flow provided the total cooling is suf- 
ficient to ensure wall temperatures close to absolute zero. 

This study gives a sufficiently complete representation of the qualitative features of 
gas flow in a flat channel with cryogenicwalls as confirmed bythe results of numerical cal- 
culations for a typical range of the definitive parameters. 

NOTATION 

y, z, spatial coordinates; Vy, Vz, components of gas velocity; 0, density; p, pressure; 

T , Y , components of vis h, enthalpy; H, total enthalpy; ~, ratio of specific heats; Tyy, yz zz 
cous stress tensor; qy, qz, components of thermal flux vector; ~, coefficient of viscosity; 
~, Prandtl number; R, channel half-width; q,, q2, q3, flows of mass, momentum, and energy; ~, 
dimensionless parameter characterizing axial flow variations; 8, y, dimensionless flow param- 
eters [Eqs. (I0)]; Av, Bv, Bw, Bh, coefficients of expansions in the neighborhood of the wall; 
lf, coefficient of channel resistance; l, channel length; FZ, total resistive force of chan- 
nel; S, cross-sectlonal area of channel; U, velocity at channel axis in entry cross section; 
0, subscript denoting values on the axis. 
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MATHEMATICAL SIMULATION OF HEAT- AND MASS-TRANSFER PROCESSES IN 

SEPARATED FLOWS WITH A LAMINAR MIXING REGION AT LOW REYNOLDS NUMBERS 

R. I. Ayukaev and L. V. Poluyanov UDC 66.015.25 

The lower limit of applicability of the mathematical model of heat and mass trans- 
fer constructed by Batchelor and Lavrent'ev for separated flow past a bottom 
trench is extended. 

The mathematical model of heat and mass transfer for separated flow past a bottom trench 
constructed by Batchelor and Lavrent'ev [i] is of undisputed interest in many chemical- 
engineering problems. In particular, it is used successfully for study of hydrodynamic in- 
homogeneities in reactors with a fixed catalyst layer [2]. 

Quantitative estimates of heat and mass transfer are obtained in this model by employ- 
ing dynamic and diffusion boundary-layer theory, so that its use is recommended only at Rey- 
nolds numbers exceeding hundreds or even thousands [3]. However, a significant number of 
processes take place at moderate or low Reynolds numbers, also with realization of a separa- 
tion in the flow, so that this model could also be utilized. Numerical solutions of the 
Navier-Stokes equation by Myshenkov [4] for flow of a gas beyond a plate of finite thickness 
in the Reynolds number range of 1.7 to i00 show the possibility Of existence of flows with 
separation at even small Reynolds numbers. The gas flow in the wake beyond the plate at 
Re < 1.7 is of a continuous nature, but at Re = 1.7 at the rear critical point there develops 
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